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Abstract

Automatic Image Orientation

by

Aleksey Trofimov

Suppose we have a set of correctly oriented images and a set of similar images

that may or may not be correctly oriented. In this thesis we propose a framework

for automatically orienting images in the second set. We describe how image ori-

entation can be broken up into two problems of feature extraction and orientation

prediction. We extract binary features and labels and then learn linear weights

using machine learning algorithms as models for orientation prediction.

Using RGB pixel values we compute binary feature vector xj ∈ {−1,+1}n and

label yj ∈ {−1,+1} for whether the orientation is correct. The classification algo-

rithms learn a linear weight vector w that models the correct image orientation.

The prediction is the orientation that maximizes the dot product of the feature

vector xj and parameter vector w.

We investigated three different ways to extracting features: color presence,

edge direction (binned EDH) and light-dark contrast. The results were labeled

and used to compare the prediction accuracy of Perceptron, Boosting variants,

Logistic Regression and SVM algorithms. With 628 outdoor photos and four

orientations we achieved ∼93% prediction accuracy (compared to 25% guessing

at random) using the best algorithm and a single set of features. By selecting 900

features from each feature set with AdaBoost and appending them together we

increased the prediction accuracy to ∼99%.
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1 Introduction

There are settings where digital images are produced and not oriented or labeled

with the correct orientation. Low-end digital cameras, scanned photos and cell-

phone photos produce images that may not be oriented correctly. It is a tedious

task to orient them manually. The goal of this thesis is to present a method for

using computer vision and machine learning techniques to orient images automat-

ically. We describe how image orientation can be broken up into two problems

of feature extraction and orientation prediction. If we had the solutions to these

two problems, we could orient images. We extract features from an image by

looking at brightness levels (FHAAR ), edge directions (FEDGE ) and color presence

(FCOLOR ). We then use classification algorithms such as Perceptron, AdaBoost,

AdaBoost*, MadaBoost, SoftRankBoost and Logistic Regression to learn models

for predicting image orientation.

This thesis is structured in the following way: In the introduction we give an

overview and methodology for our method. In section 2 we cover the feature ex-

traction algorithms in some detail and move to the machine learning algorithms

in section 3. Section 4 gives an overview of work related to image orientation and

classification. We dedicate a section to implementation notes followed by a look

at parameter tuning in section 6. Section 7 gives the results of running algorithms

on features described earlier. We conclude the thesis with a look at some partial

work and a future work sections.
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1.1 Notation and definitions

1.1.1 Common Terms

Dot Product - Sum of products of individual elements of two vectors. It is a measure of how
similar two vectors are.

Confidence - Measure of how confident an orientation prediction is.

Rejection - Abstaining from orienting an image based on low confidence.

Accuracy - Orientation prediction accuracy. The fraction of images oriented correctly out of
the total number of images that are not rejected.

Rejection Curve - A plot of prediction accuracy vs the percent of images that can be rejected.

Spatial Pyramid - A partitioning of an image into increasingly fine sub-regions (cells).

Grid - A single level of a spatial pyramid.

Feature - A single real-valued piece of information.

Decision stump - A piece of information that only has two values (+1 or −1). It is computed
by checking whether a feature is larger than some threshold.

Binary Feature Vector - A vector of decision stumps. Just ‘feature vector’ in this thesis.

Feature Set - Feature vectors computed from a single feature type.

Label - An indicator for whether a feature vector describes a sample with correct orientation
(label = +1) or not (label = −1).

RGB - Red, Green and Blue values representing a color in RGB color space.

Channel - A double array of pixel values for a single color like Red (CRED).

Tuning - Trying a range of parameter values and picking an optimal based on prediction accu-
racy.

SubTrain Set (KSUBTRAIN ) - Set of images to train on to tune parameters.

Validation Set (KVALIDATION ) - Set of images to test on to tune parameters.

Train Set (KTRAIN ) - Both SubTrain and Validation Sets (KSUBTRAIN ∪KVALIDATION ). The
set of images to train on to make a model for testing.

Test Set (KTEST ) - Set of images to test a model on to report the results.

Experiment - A single execution learning on KSUBTRAIN and recording the prediction accuracy
on KTEST .

2



1.1.2 Overview

We took 628 outdoor photos from a private collection and split them into two sets:

471 image for training and 157 images for testing. We worked with images at a

resolution of 360×360 pixels. We rotated each image 4 ways (0◦, 90◦,−90◦, 180◦).

For each orientation q ∈ Q(4) of image i, we computed a binary feature vector

xq
i ∈ {−1,+1}d and assigned it a label yqi = +1 if q is the index of the correct

orientation and −1 otherwise. Since all the images in the training set are correctly

oriented the first orientation is the correct one (i.e. q̃ = 1). So for each image i

we computed 4 feature vectors x1
i . . .x

Q
i with labels +1,−1, · · · − 1 respectively.

Combining xq
i with its label yqi we get tuples (xj, yj) as examples for the machine

learning algorithms to train on.

Figure 1: Overview of generating examples from images. Note that a binary feature
vector for image i with orientation q is the same as sample Qi+q−1 (i.e. xq

i = xQi+q−1).

If we are training on m images with Q orientations, we have a total of n = mQ

examples. The tuples (xj, yj) are organized by putting all labels into a vector y

and all the training samples into a matrix X (see figure 2). From them, we can

learn a linear weight vectorw ∈ Rd that we use to predict orientation. Given a new
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image zk, the q possible orientations are ranked via a dot product with w and the

one with the highest score is the classifier’s prediction (i.e. q̂k = argmaxq∈Q xq
k ·w).

The prediction is correct if q̂ = q̃ (i.e. yQi+q̂−1 = +1) and wrong otherwise.

1.1.3 Feature Extraction

We are given an image in three two-dimensional arrays (matrices) CRED, CGREEN ,

CBLUE which contain the channel information for red, green and blue respectively.

The value in each channel ranges from 0 to 255 for each pixel. The dimension

of the image is s × s pixels. For the spatial pyramid (described in section 1.1.5)

we vary the size of the grid from BS × BS to BB × BB when we compute the

features. For each cell (region) we compute a local feature vector fc such that

fc(i) ≥ 0. A side of each cell is σ = s
B

pixels where B is the size of the grid at

current level of spatial pyramid. All the fc appended together make F , a feature

vector containing all the features in the spatial pyramid. F has values in Z+. To

convert F to a binary feature vector xj we use a threshold of θ = 1
2

∑
i Fi

d
(half of

the mean value).

1.1.4 Machine Learning

We are given n feature vectors. Each sample xq
i is a binary feature vector of length

d computed from image i with orientation q. For each sample j we are given a

label yj that is +1 if this orientation is upright and −1 otherwise. A classification

algorithm is allowed to run up to T iterations [of the outer-most loop] to learn

the linear weight vector w which is used to predict the orientation of an image.

The data is laid out in the following way: y is a vector of length n where each

value is yj and X is an n× d matrix where row j is xj and column k is hk. The

algorithms used in this thesis return a linear real valued weight vector w of length

d. If wk > 0 it indicates that Fk is correlated with correctly oriented samples.

4



Figure 2: Data Layout with samples in a Matrix X and labels in a Vector y.

1.1.5 Spatial Pyramid

Computer vision techniques use spatial features [2, 19, 6, 21, 24, 25, 27, 26, 30, 8,

32]. In our experiments we relied on the concept of a spatial pyramid [17] for fea-

ture organization. In image orientation the same colors and shapes will be present

in all candidates (possible orientations). In order to predict the orientation cor-

rectly we must look at both presence of features and their locations. For that we

divide each image into a B×B grid with B2 cells and then look for features in each

cell. What grid size to choose depends on the specific data and computational

constraints. It has been shown that good results are achieved if a variety of grid

sizes are used together [2, 17, 19]. If you imagine grids of increasing sizes stacked

together in order, it will look like a pyramid, hence the name - spatial pyramid.

In this thesis, we computed the features in the context of a spatial pyramid.

Instead of using a single grid, we used grids of sizes BS ×BS . . . BB ×BB.

5



. . .

Figure 3: An example of a spatial pyramid with grid size = 2 . . . B.

1.2 Methodology

Our dataset is separated into two sets. KTRAIN is a set of images to train and

tune parameters on. KTEST is a set of images on which to test in order to report

results. All parameters that are fixed during testing were set using KTRAIN alone.

By dividing KTRAIN into two subsets (KSUBTRAIN and KVALIDATION ) we were able to

tune parameters by training on KSUBTRAIN and testing on KVALIDATION .

1.2.1 Feature Extraction Parameter Tuning

Hardware constraints limited the size of the feature vectors we could use. Because

of this we had to tune the number of features computed from each region vs the

number of the regions.

We choose the optimal parameter values based on prediction accuracy =

#correctly oriented
# images in KVALIDATION

. Through experimentation we determined good base

values for parameters. Then we tuned them one-by-one using the Average Per-

ceptron algorithm (described in section 3.1). We chose it because of its efficiency

and lack of parameters to tune. We made the assumption that features that work

well for this simple algorithm work well for other machine learning algorithms.
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1.2.2 Machine Learning Parameter Tuning

The machine learning algorithms described in this thesis learn a linear weight

vector w that will classify the training data perfectly. Because of the high di-

mensionality of the feature vectors the data is linearly separable (can be perfectly

separated by linear weights). Learning to separate all of KSUBTRAIN is not optimal

because the set includes outliers. Over-fitting occurs when the machine learning

algorithms learn how to separate the outliers; they fit noise instead of general

patterns. In our experiments we use early stopping as a way to prevent over-

fitting. Not letting machine learning algorithms run to convergence prevents w

from being too custom-tailored to the training data.

In order to figure out a good number of iterations T (iterations of the outer-

most loops of the algorithm) we train on KSUBTRAIN and test on KVALIDATION every

few iterations. We stop when the current iteration number t is twice as large as the

optimal so far. To make sure that the value of T is not in large part due to a partic-

ular permutation of KTRAIN , it is broken up into KSUBTRAIN and KVALIDATION several

times. It is customary to only let each image in KTRAIN be in KVALIDATION once. If

this cross-validation is performed 5 times, then the size of KVALIDATION must be 1
5
th

of the size of KTRAIN and this will be a 5-fold-cross-validation. The optimal value

of T is then the one that yields the highest prediction average accuracy during

the cross-validation runs.

Some of the machine learning algorithms used in this paper also have param-

eters that must be fixed. To fix the parameters we used the images KTRAIN and

tuned them with 15-fold-cross-validation with feature-extraction parameters tuned

beforehand.

7



1.2.3 Carrying Out Experiments and Reporting Results

Using the parameter values fixed with images in KTRAIN we compared the perfor-

mance of different feature sets and machine learning algorithms. For each pair,

we tuned the value of T using cross-validation, then, used that value train on the

entire KTRAIN . We tested the resulting w on KTEST and reported the resulting

prediction accuracy.

Specifically, using 5-fold-cross-validation single experiment consisted of doing

the following:

1. For run = 1 . . . 5

• Take 1
5
th of images that haven’t been chosen before from KTRAIN and

put them into KVALIDATION .

• Put the rest into KSUBTRAIN .

• Train the learning algorithms on the KSUBTRAIN set.

• Test and record on KVALIDATION every few iterations.

2. Determine the optimal value for T using average accuracies from cross-
validation.

3. Train on KTRAIN using T iterations

4. Test on the KTEST set to obtain the accuracy for this experiment.

We compare accuracy achieved with different pairs of features and algorithms

against each other. We also compare how algorithms described here fare against

Support Vector Machines (SVM) (SVMlight Implementation [14]).

The prediction accuracy of an experiment was computed by taking the predic-

tion index (q̂) for every image in KTEST . The sum of correct predictions (q̂ = q̃)

divided by the total number of testing images is the prediction accuracy (i.e.

accuracy = 1
m

∑m
i=1 Ii where Ii = 1 if q̃ = argmaxq∈Qw · xq

i and 0 otherwise ).

BecauseKTEST contains images that are hard to orient, it is beneficial to abstain

from orienting an image if determining its orientation is too difficult. Rejecting

8



an image for this reason can be done in a variety of ways. The simplest way

is to reject an image if the dot product of the weight vector w and predicted

orientation vector xq̂
i is less than some threshold. If an image is rejected it is not

included in the prediction accuracy computation. We used this simple rejection

scheme resulting in various proportions of rejected images. Plots of orientation

accuracies with different levels of rejections are called rejection plots and they may

give further insight into accuracies achieved with different learning algorithms. In

addition to numerical summaries we provide rejection plots.

1.3 Dataset

The general case of natural image orientation is a very complex problem and we

believe it cannot be done without object recognition. With 4 orientations and

without object detection the best reported prediction accuracy for this problem is

∼ 75% [19]. For image orientation to work images in KTRAIN must have something

in common with the images in KTEST . For our dataset we chose 628 natural

photographs that were all taken outdoors, during daytime with some background

visible. For simplicity, we worked with square images at a resolution of 360× 360

pixels. We used four orientations (0◦, 90◦, 180◦, 270◦).

9



Figure 4: Some examples of the photographs we used for this thesis.

We only used images that had color in them (i.e. no grayscale or sepia). There

had to be at least two distinct colors in the image so the colors are not all put

into the same color bin. The square images produced for this thesis were made by

re-sampling the pixels at 380×380 resolution using nearest-neighbor with 2x anti-

aliasing. Blurring an image, computing edge magnitudes and passing the image

through other filters produces noise. This is why we down-sized images with an

extra 20 pixels of padding that were not used when computing features.

The dataset we used is good, but it is not perfect. Some of the images are

very similar. They were taken in similar locations by the same photographer and

include the same people over and over. Some of the images are definite outliers

(e.g. photo in a pool with yellow wall above). Ideally we would have another

data set from a new source to test on for more accurate reporting. Certain images

would have to be filtered out, otherwise the expected orientation accuracy might

be very low [2]. For this reason we take the best method and check its performance

on another dataset in section 8.4.
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2 Features

We use spatial features that is presence of features in certain parts of the image.

All the features we use were picked for their simplicity and low calculation costs.

We looked at Haar-Wavelet-Like (FHAAR ) features based on the ones described

by Viola and Jones [28]. They are very fast to compute and they have been suc-

cessfully used for facial detection. We looked at color presence (FCOLOR ) features

because there is a strong correlation between location of colors and orientation

[29]. And we looked at orientation gradient (FEDGE ) features because they are

widely used in computer vision for object detection [2, 6, 19, 25, 8, 32].

We computed the features in the context of the spatial pyramid. For each grid

and for each region within a grid, we computed the features, and then appended

them together into a feature vector. It is imperative to scale values in the regions

by the number of pixels so that regions in higher levels of the spatial pyramid

don’t have more importance. Afterwards, features were converted into binary fea-

tures via a threshold.

The feature vectors were calculated in the following way:

1. Pre-process the image

2. For B = BS . . . BB

• Compute the features using a grid size of B

• Adjust the features by multiplying by B2

3. Convert the features vectors into decision stumps via a threshold.

2.1 FHAAR Features

Haar-Wavelet-Like features or FHAAR became accepted through the Viola and

Jones’ [28] paper where they successfully used them for face detection. FHAAR are

11



features that resemble Haar-Wavelets. They are a collection of region-pixel-

brightness comparisons. The features that we use are slightly different from those

described in the original paper. For example in the original paper, a feature of

[1 0 1] (a bright region followed by a dark region followed by a bright region)

was computed by taking the sum of pixels in the white regions and subtracting

double the sum of pixels in the middle region. The resulting feature value was a

negation of the response to [0 1 0]. Our computation was different in the following

way: first we ensured that for [1 0 1] the middle region was darker than the two

others (otherwise the feature value is 0), and when computing the feature value,

we subtracted the sum of pixels in the middle region from the darkest neighbor so

that the resulting feature value was proportional to the average pixel-brightness

difference between a light and the dark regions. In our implementation, the fea-

ture value for [1 0 1] is not the negation of [0 1 0], so both had to be included in

the feature space.

We chose to try FHAAR because in spatial pyramid regions are already defined

and FHAAR features can be extracted in a straight-forward manner by using every

cell as a region. So in a level of the spatial pyramid of size 3 by 3, there will be

three responses for [0 1 0].

Viola and Jones [28] describe how to highly optimize the computation of

FHAAR features by precomputing an integral image (see algorithm1) which can

then be used for quick look-ups of the sum of the gray-scaled pixel values for any

rectangular part of the image.

12



Algorithm 1 FHAAR Computation

1. Inputs:

s ∈ Z+ = size of a side of the image (in pixels)
S = {CRED, CGREEN , CBLUE}
BS, BB ∈ Z+ : BS < BB = grid size interval

2. Initialize:

I = .3CRED + .59CGREEN + .11CBLUE

I = [I − Imin]
256

Imax−Imin

For x ∈ {1 . . . s− 1}, y ∈ {0 . . . s− 1}
Ix,y = Ix,y + Ix,y−1

For y ∈ {1 . . . s− 1}, x ∈ {0 . . . s− 1}
Ix,y = Ix,y + Ix−1,y

F = [ ]

3. Iterate:

For B = BS . . . BB

For i = 1 . . . B, j = 1 . . . B
σ = s

B

Yi,j = [I(i+1)σ,(j+1)σ + Iiσ,jσ − I(i+1)σ,jσ − Iiσ,(j+1)σ]B
2

Foreach H ∈ {[0 1], [0 1]T , . . .}
F = F ∪ fc : fc is the response to feature H
E.g. H = [0 1 0]

fc = [ ]
For i = 1 . . . B, j = 1 . . . B − 2

fc = fc ∪ {max(0, Yi+1,j −max(Yi,j, Yi+2,j))}
F = F > 1

2
Fmean? + 1 : −1

4. Output:

Vector F

In the beginning of each iteration, I contains the integral image computed

with dynamic programming by first accumulating the sum over the rows and then

columns. Yi,j is the sum of pixel values in region of row i column j scaled by B2

so that every region in the spatial pyramid has the same scale and σ is the size of

13



a region in pixels.

Figure 5: The HAAR features we used

The decision stumps computed using HAAR features can be interpreted in a

straightforward way. If a decision stump is +1 for [1 0 1] it means that the bright

regions are both brighter than the dark region. It further means that out of all

features, the difference in brightness for this feature was larger than others.

2.2 FEDGE Features

There has been reported success using directions and magnitude of Canny Edges

in object detection and image orientation and classification [30, 27, 13, 24, 2].

The Canny Edge Detector takes two edge responses from a blurred image: V for

vertical edges and H for horizontal edges. Then it computes the total magnitude

of the edge by taking Euclidean Distance. There is a large choice of edge operators

to compute H and V : Roberts, Prewitt, Sobel, Step and Double Step. We used

Double Step as it worked best.

We use a variant of these features denoted as FEDGE . The way we compute

them is by first finding an approximation to Canny Edges (see section 5). Then,

within the context of the spatial pyramid, for each cell we use directional bins that

collect strength of edges in that direction. This can be thought of as first com-

puting an edge histogram (a plot of edge intensity vs. edge direction angle) then

dividing edge directions into equal intervals and computing the average value in

the histogram for each interval. After adjusting for the size of the cell, appending
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these bins together from the spatial pyramid produces a feature vector which can

be turned into a binary feature vector through a separation by a threshold.

Figure 6: An example of an edge histogram. On the left is the source image and on
the right is a plot of edge directions and their combined magnitude.

Matrix I is an s×s matrix containing the gray-scaled values of the pixels. It is

normalized. The convolution of I with a horizontal double step filter produces a

response matrix H which contains the strength of a horizontal edge at each pixel.

Similarly, V contains the strength of a vertical edge at each pixel. For each angle

we are trying to bin them into b orientation bins and matrix D contains an index

of the angle.
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Algorithm 2 FEDGE Computation

1. Inputs:

s ∈ Z+ = size of a side of the image (in pixels)
S = {CRED, CGREEN , CBLUE}
BS, BB ∈ Z+ : BS < BB = grid size interval
b = # of orientation bins

2. Initialize:

I = .3CRED + .59CGREEN + .11CBLUE

I = [I − Imin]
256

Imax−Imin

H = I ∗

 1 0 −1
0 0 0
1 0 −1


V = I ∗

 1 0 1
0 0 0
−1 0 −1


M = |V |+ |H|
D = ⌊tan−1

(
V
H
+ π

2

)
b−1
π
⌋

F = [ ]

3. Iterate:

For B = BS . . . BB

For i = 1 . . . B, j = 1 . . . B
fc = 0
σ = s

B

For x = iσ . . . (i+ 1)σ, y = jσ . . . (j + 1)σ
fc(Dx,y) = fc(Dx,y) +Mx,y

F = F ∪ (fcB
2)

F = F > 1
2
Fmean? + 1 : −1

4. Output:

Vector F

There is only one parameter that can be tuned: b = number of degree bins =

how many discrete values we are taking from the edge histogram. This is inversely

proportional to depth of the spatial pyramid.
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2.3 FCOLOR Features

The last feature set that we used was color presence. Color contains an enormous

amount of information in the image and has been successfully used as a feature

for image orientation [30, 27, 13, 24, 2]. It makes sense to look for blue sky on top

and green grass on the bottom of a correctly oriented image. There are many ways

to make a computer look at color: HSV, LUV, CMYK, YCbCr, but we simply

indexed the RGB (red, green and blue) values. Digital images naturally come in

three channels, so it is efficient to work with RGB values. Related works tend to

compute Color Moment (CM) features - mean and variance of color descriptors

in some color-space. However because we chose to work with binary features,

we have to index colors and it is easiest to work RGB values. This allows us to

include features like absence of colors in certain regions of the features, which CM

features do not capture.

Using all 24 bits of color information was too much for features, so we reduce

the number of color values per channel from 256 to d.

Figure 7: An example of an image after color reduction. On the left is an image with
16 million colors (24 bits of color depth) and on the right it is after color reduction to
216 colors
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Algorithm 3 FCOLOR Computation

1. Inputs:

s ∈ Z+ = size of a side of the image (in pixels)
S = {CRED, CGREEN , CBLUE}
BS, BB ∈ Z+ : BS < BB = grid size interval
b = # of colors per channel

2. Initialize:

∀ C ∈ {R,G,B} CC = CC
d

256

I = CBLUE + CGREENd+ CREDd
2

F = [ ]

3. Iterate:

For B = BS . . . BB

For i = 1 . . . B, j = 1 . . . B
fc = 0
σ = s

B

For x = iσ . . . (i+ 1)σ, y = jσ . . . (j + 1)σ
fc(Ix,y) = fc(Ix,y) + 1

F = F ∪ (fcB
2)

F = F > 1
2
Fmean? + 1 : −1

4. Output:

Vector F

This results in d3 possible color indexes per cell. The only parameter to tune

is d, how many values are there per channel.

3 Algorithms

The task for the machine learning algorithms described in this thesis is to learn to

predict a correct image orientation. It can be accomplished by learning a linear

weight vector w, whose dot product with feature vectors of correctly oriented

samples (w ·xq
i ) is high. This can be thought of as finding a separating hyperplane
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in the feature space that separates x1
i from xq

i for q > 1. For orienting a single

image i that means if q̃ = 1 (the first sample for every image is upright) we want

w · x1
i > max(w · x2

i , . . . ,w · xQ
i ).

In this thesis we describe 6 algorithms that have been used effectively for

binary classification and ranking : Perceptron [9], AdaBoost [10], AdaBoost* [22],

MadaBoost [7], SoftRankBoost [12] and Logistic Regression [3]. The linear weight

vector w returned by the algorithms is perpendicular to the separating hyperplane

pointing in the direction of positively-labeled samples. For binary classification

tasks a threshold (hyperplane’s distance from the origin) is necessary for the dot

product xj · w to classify into one of two classes. However thresholding is not

necessary for image orientation because we choose the correct orientation based

on the highest dot product.

3.1 Perceptron

The Perceptron Algorithm [9] works in the following way: it begins with some

guess ofw (usually 0), and then for every sample it updatesw if it does not predict

the sample label correctly. There are many versions of Perceptron. The simplest

version, upon update adds the sample multiplied by the label (i.e. w = w+yjxj).

If the data is linearly separable (which is the case with our data), Perceptron

will make a finite number of mistakes and will converge to a w that separates

the training samples. There are many modifications to this algorithm that prove

beneficial. Using a learning rate α that decreases over time so the update is

w = w+αyjxj makes Perceptron more stable. Training Perceptron on differences

in samples (i.e. xj = xl − xm s.t. ∀l,m : yl = +1, ym = −1) allows for a better

use for ranking [4]. Averaging w makes the Perceptron generalize better. Freund

and Schapire [9] described a Voted Perceptron which uses all of the weight vectors
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produced after each example is processed and makes a prediction using a weighted

combination of the different weight vectors’ predictions. They proved that Voted

Perceptron achieves a better margin than the original Perceptron algorithm.

We experimented with different versions of the Perceptron Algorithm and set-

tled on the Averaged Perceptron with an update rule modified for our specific

task. We did not use the Voted Perceptron because it does not return a single w.

In our experiments, Averaged Perceptron was just as good as Voted Perceptron.

The Averaged Perceptron we used works in the following way: for each image i

if w doesn’t predict the correct orientation (q̂ ̸= 1), it adds x1
i and subtracts xq̂

i

from w. Adding x1
i − xq̂

i to w changes it in such a way that new dot product

with xi
1 will be higher and the dot product with xi

q̂ will be lower. The algorithm

continues to iterate for T iterations of the outermost loop (passes over the data,

see algorithm 4) even if it is not making any more mistakes. Every iteration it

keeps the average value of the weight vector waverage so far and returns that in

the end.

When the Perceptron runs past separation (t > ts where wts separates the

training samples),waverage continues to change and in the limit converges to wts .

Adjusting T helps generalize the w for future samples. Our data contains outliers

and if T is small waverage will not be influenced by them much. On the other

hand if wts separates the data with a large margin and T is high enough, it will

overshadow bad values of w during first iterations. It is beneficial to tune T with

cross-validation.
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Algorithm 4 Averaged Perceptron

1. Inputs:

Q ∈ Z+ : number of possible orientations.
m ∈ Z+ : number of images.
S = (x1

0, . . . ,x
Q
0 ,x

1
1, . . . ,x

Q
m)

q̃ = 1 : correct orientation on all training samples
T ∈ Z+ : number of iterations.

2. Initialize:

w0 = 0
waverage = 0

3. Iterate:

For t = 1 . . . T
For i = 0, . . . ,m− 1

q̂ = argmaxq∈Qw · zqi
If q̃ ̸= q̂ then wt = wt−1 + (xq̃

i − xq̂
i )

Else wt = wt−1

waverage =
t−1
t
waverage +

1
t
wt

4. Output:

Vector w = waverage

In our experiments, Averaged Perceptron found the optimal w in a very small

number of passes over the data (3 − 11) and was much faster than all the other

algorithms we tried. For that reason we used Perceptron to tune parameters for

feature extraction. This is not ideal, but it worked well in practice.

3.2 AdaBoost

Boosting algorithms combine predictions of weak classifiers into a stronger clas-

sifier. The decision stumps that make up the feature vectors in our problem can

be thought of as classifiers (weak learners). The linear weights that boosting al-
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gorithms can assign to them make up the linear weight vector w. AdaBoost [10]

is an adaptive boosting algorithm that chooses weak learners in a greedy fashion

and assigns weights to them. AdaBoost finds a hyperplane in the feature space

that separates the training samples with a positive margin.

The original AdaBoost [10] works with hypotheses (label predictions of a clas-

sifier). With binary features, the hypotheses are the decision stumps (see figure

8) hk (where k is the number of the feature). AdaBoost maintains a distribution

(weight vector where weights are positive and sum up to 1) D for the samples. Ev-

ery iteration t ∈ T when hkt is selected a weight αt is added to the corresponding

wkt .

Figure 8: A graphical representation of the data used for AdaBoost, AdaBoost* and
MadaBoost

In the original formulation of AdaBoost, the prediction of the final classifier

for xj is the sign(
∑

t αtht(xj)) resulting in a binary classification algorithm. For

our problem there are 4 orientations and we pick the output with the highest

w ·xj. The separating hyperplane has a margin for sample j of yjw ·xj (assuming

||w||1 = 1). This measure of the margin is the Manhattan Distance for sample j to

the separating hyperplane. The dual problem to maximizing the minimal margin
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is minimizing the maximal edge γ. Edge γk for hypothesis k is a measure of how

much better than random is hypothesis hk. More formally, γk = 1 − 2 error so

if γk = 1, hk predicts perfectly and if γk = 0, hk is as good as a random guesser).

The definition of γk with respect to distribution D is γk =
∑n

j D(j)yjhk(j). Every

iteration t ∈ T of AdaBoost, the next hypothesis ht is the one that maximizes the

edge with respect to the current distribution Dt.

The range for γk is [-1, +1]. The set of all hypotheses H is complement closed,

so when computing ht for every k both hk and −hk are considered. Because of

this γt is never negative (for every hk for which γk < 0 there’s its negation for

which γ > 0). A simple way of making sure the set of hypotheses is closed under

negation is to append the negatives of the decision stumps to the feature vectors.

Working with decision stumps for AdaBoost has been looked into by Rennie [23].

The details of the way we implemented it are covered in section 5. AdaBoost

converges in the limit, however it only achieves half the optimal margin (if the

maximal margin is ρ∗, the resulting margin from AdaBoost is 1
2
ρ∗) [22].

Once the ht is selected, AdaBoost computes a weight for it (α) and updates

D accordingly. The update is Dt(j) = Dt−1(j) exp(−αtytht(j)) which adjusts

the weights in an exponential manner. In the limit D has all the weight put

on outliers. In most cases, AdaBoost does not over-fit [10]. In our experiments,

over-fitting occurs. Therefore early stopping is a reasonable thing to do and T is

a parameter that needs to be tuned.

Because the distribution D is adjusted in an exponential manner, it is possible

that a change from one iteration to the other overshoots the optimal point. To

prevent this from happening in an ad-hoc way, we cap αt so that the update is

not as drastic. This makes the algorithm learn slower but does not change the

final outcome. However, it allows us to fine-tune T . We use this AdaBoost with

capped α.
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Algorithm 5 AdaBoost with capped α

1. Inputs:

n ∈ Z+ = number of samples (mQ).
d ∈ Z+ = size of the feature vectors xj.
T ∈ Z+ = maximum number of iterations.
S = {y,h1,h2, . . . ,hd}
αC ∈ R+ = the maximum value for α

2. Initialize:

w = 0
D0 =

1
n
, initialize sample weights to 1

n

3. Iterate:

For t = 1 . . . T
kt = argmaxk γk where γk =

∑n
j Dt−1(j)yjhk(j)

ht = hkt

γt = γkt
αt =

1
2
log

(
1+γt
1−γt

)
αt = min(αt, α

C)
Update the distribution

Dt(j) = Dt−1(j) exp(−αtyjht(j))
Dt =

Dt

||Dt||
wkt = wkt + αt

4. Output:

Vector w

As with the Perceptron Algorithm, we can benefit from early stopping via

setting a limit on T . This limit can be tuned with cross-validation.

3.3 AdaBoost*

A limitation of AdaBoost is that it is only stable if a separation exists (the optimal

margin ρ∗ > 0). If it does, in the limit AdaBoost achieves half the optimal margin.
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AdaBoost* [22] is a variation of AdaBoost that achieves the optimal margin even if

the margin is negative (training data is inseparable). AdaBoost* has a guarantee

that after T = 2 logn
ν2

iterations it is guaranteed to be within ν from the optimal

margin (i.e. the achieved margin is at least ρ∗ − ν). In fact, AdaBoost* explicitly

maximizes the minimal margin (maxwminj yj(w ·xj) s.t. ||w||1 = 1) to a precision

of ν. AdaBoost* approaches the optimal margin by using the best estimate of

what it is at every iteration t ∈ T .

The modification to the algorithm is very simple: αt is updated using the

smallest edge (γt) seen so far by subtracting 1
2
log

(
1−γmin

t +ν

1+γmin
t −ν

)
from it.
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Algorithm 6 AdaBoost*

1. Inputs:

n ∈ Z+ = number of samples (mQ).
d ∈ Z+ = size of the feature vectors xj.
T ∈ Z+ = maximum number of iterations.
S = {y,h1,h2, . . . ,hd}
ν ∈ R+ = desired accuracy parameter.

2. Initialize:

w = 0
D0 =

1
n
, initialize sample weights to 1

n

3. Iterate:

For t = 1 . . . T
kt = argmaxk γk where γk =

∑n
j Dt−1(j)yjhk(j)

ht = hkt

γt = γkt
γmin
t = min(γt, γ

min
t−1 )

ρt = γmin
t − ν

αt = 1
2
log

(
1+γt
1−γt

)
− 1

2
log

(
1−ρt
1+ρt

)
Update the distribution

Dt(j) = Dt−1(j) exp(−αtyjht(j))
Dt =

Dt

||Dt||
wkt = wkt + αt

4. Output:

Vector w

AdaBoost* has two parameters that can be tuned: ν - the precision parameter

to how close to the optimal margin we want to get and T - the number of iterations

the algorithm is allowed to take. Even though we have a bound on the number of

iterations given ν, our data is not i.i.d. so in practice the algorithm converges much

faster. Our samples also contain outliers, so early stopping (T ) is a parameter

that needs to be tuned.
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3.4 MadaBoost

AdaBoost and AdaBoost* compute a hyperplane that maximizes the minimal

hard margin. That means that every sample has the same importance. This is

a problem when the data is noisy (contains outliers). To address this, there are

versions of AdaBoost that achieve a so-called soft-margin that is noise resistant.

The simplest of these algorithms is MadaBoost [7]. The way MadaBoost achieves

soft margin is by limiting weights in the sample weight distribution.

The modification from AdaBoost is very simple. The data layout is the same as

in AdaBoost (see figure 8) except the sample weight distribution used to compute

γkt is different. When picking a hypothesis ht a distribution D′
t is used. D′

t is

the same as Dt except the weights are capped to their original values. D′
t is

computed by capping weights at 1
n
and then dividing by the 1-norm to make it a

proper distribution. Everything else is exactly the same.

Because the weights are capped, α is prevented from getting large and as a

result MadaBoost is slower than AdaBoost theoretically. However, in our experi-

ments, MadaBoost was as fast as AdaBoost (see section 7).
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Algorithm 7 MadaBoost

1. Inputs:

n ∈ Z+ = number of samples (mQ).
d ∈ Z+ = size of the feature vectors xj.
T ∈ Z+ = maximum number of iterations.
S = {y,h1,h2, . . . ,hd}

2. Initialize:

w = 0
D0 =

1
n
, initialize sample weights to 1

n

3. Iterate:

For t = 1 . . . T
D′

t = min( 1
n
,Dt−1)

D′
t =

D′
t

||D′
t||

kt = argmaxk γk where γk =
∑n

j D
′
t(j)yjhk(j)

ht = hkt

γt = γkt
If γt ≤ 0 then break

αt =
1
2
log

(
1+γt
1−γt

)
Update the distribution

Dt(j) = Dt−1(j) exp(−αtyjht(j))
Dt =

Dt

||Dt||
wkt = wkt + αt

4. Output:

Vector w

MadaBoost converged just as fast as AdaBoost or AdaBoost*. We found that

despite being a soft-margin classifier, MadaBoost suffered from over-fitting and

benefited from early-stopping so T is a parameter that needs to be tuned.
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3.5 SoftRankBoost

RankBoost is an algorithm designed to maximize the area under ROC (Receiver

Operating Characteristic) Curves (plots of false positive vs true positive rates)

[12]. ROC Curves are computed by varying the classification threshold, which is

also the way we reject images. It is possible that maximizing area under the ROC

Curve for images in KSUBTRAIN leads to a large area under a rejection curve for

images in KTEST .

RankBoost is a bipartite ranking algorithm the goal of which is to output

a scoring function that will score any positive sample higher than any negative

sample. For decision stumps (binary feature vectors) the scoring function is the

dot product with a linear weights vector w.

SoftRankBoost is a modification of RankBoost that achieves an approximate

optimal soft margin [12]. It is similar to MadaBoost in that sample weights are

capped. SoftRankBoost takes in similar parameters to other boosting algorithms

described in this thesis with one core difference: the data is split up into two sets

containing positive and negative samples (X+ and X− respectively).

Figure 9: A graphical representation of the data used in SoftRankBoost. It is very
similar to the layout in figure 8 except the data here is separated into two matrices, a
matrix with positive samples X+ and a matrix with negative samples X−.

There is one parameter to the algorithm: δ ∈ (0, 1). It determines how close to

the optimal soft margin the algorithm will get. SoftRankBoost provably achieves
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a margin objective of (1−δ)γ∗. Note that this implies that γt must be positive and

the set of hypotheses must be closed under negations (which it is). The number

of iterations in which the algorithm is guaranteed to achieve a certain margin is

inversely proportional to δ2. The original SoftRankBoost paper [12] mentions a

stopping criteria based on ν (measure of how unlikely is that the achieved margin

is under (1− δ)γ∗). We did not use that stopping criteria, because we found that

in our experiments SoftRankBoost over-fits and can benefit from stopping earlier.
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Algorithm 8 SoftRankBoost

1. Inputs:

S+ = {h+
1 ,h

+
2 , . . . ,h

+
d }

S− = {h−
1 ,h

−
2 , . . . ,h

−
d }

δ ∈ (0, 1) = desired precision parameter.

2. Initialize:

w = 0, D+
0 = 1

n+ , D
−
0 = 1

n− , α
s
0 = 0, f+0 = 0, f−0 = 0, γmin = + inf

3. Iterate:

For t = 1 . . . T
kt = argmaxk γk

where γk =
1
2
(h+

k ·D+
t−1 − h−

k ·D−
t−1)

γt = γkt
h+
t = h+

kt

h−
t = h−

kt

γmin
t = min(γt, γ

min
t−1 )

γ̂t = (1− δ)γmin
t

αt =
γt − γ̂t

2(1 + γ̂t
2)

wkt = wkt + αt

bt = −1
2
(h+

k ·D+
t−1 + h−

k ·D−
t−1)

f+t = f+t−1 + .5αt(h
+
t + bt)

f−t = f−t−1 + .5αt(h
−
t + bt)

αs
t = αs

t−1 + αt

Update the sample weight distributions
D+

t (j) = min(1, exp(−f+t (j) + γ̂tα
s
t ))

D−
t (j) = min(1, exp(f−t (j) + γ̂tα

s
t ))

D+
t =

D+
t

||D+
t ||

D−
t =

D−
t

||D−
t ||

4. Output:

Vector w
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3.6 Logistic Regression

The logistic growth function is a function that maps real valued input to proba-

bilities (values ∈ [0, 1]). It looks like a stretched-out letter ‘S’ and is sometimes

referred to as the Sigmoid function. This function is defined as f(z) = 1
1+e−z and

can be used as a model for binary classification. If we have a feature vector xj and

a weight vector w, then we can predict label as ŷj = f(xj ·w). If we need a binary

predictor we can separate the predictions into classes by a threshold θ ∈ [0, 1] so

if ŷj > θ then the prediction is 1 and 0 otherwise.

In a binary classification problem what we want is to get perfect predictions.

The batch loss for logistic regression is
∑n

j log f(xj)−yj(xj ·w). Finding a w that

minimizes the loss is the goal of logistic regression. The problem is that minimizing

this produces a w that over-fits the training data. A way to regularize it is to

ensure that no wk approaches infinity. This can be done by regularization with

λ||w||22 where λ is some regularization parameter that needs to be tuned. The way

to formulate this problem is w = argminw

∑n
j ln(1+ ew·xj)− yj(xj ·w) + λ||w||22.

A way to approximately solve this equation (find an optimal value) is by

Gradient Descent. Gradient Descent is an optimization algorithm that takes steps

against the gradient. The gradient for logistic regression with regularization is

∇ =
∑n

j (ŷ− y) · xj + λw. Subtracting a scaled gradient from w every iteration

t ∈ T eventually makes w converge at the optimal point. The update is wt =

wt−1 − η∇ where η is step size.

The parameter η doesn’t affect the outcome, but if it is very small, the algo-

rithm will require a large number of iterations to converge, and if it is too large,

then updates for w might take very large steps and miss the optimal point. For

this reason we dynamically change η. If the size of the gradient (gt) is not de-

creasing (η is too large), we decrease η. If the size of the gradient is falling very
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slowly, we increase η.

To make it accept binary data ∈ {+1,−1} (as opposed to {0, 1}). We defined

f(z) = 1−exp(−z)
1+exp(−z)

so that f(z) returns values ∈ (−1,+1).

Lastly, early stopping in our experiments proved to be beneficial, so the al-

gorithm is allowed to execute up to T iterations of the outer-most loop (make T

steps, see algorithm 9). Optimal value of T can be tuned using cross-validation.

Through experimentation (section 7) we found a good value of λ and held it

constant.

Algorithm 9 Batch Logistic Regression with Gradient descent

1. Inputs:

n ∈ Z+ = # of samples (mQ).
d ∈ Z+ = size of the feature vectors xj.
S = {y,x1, . . . ,xn}
λ ∈ R+ = regularization factor.
T ∈ Z+ = maximum number of iterations.

2. Initialize:

w = 0, initialize the feature weights to 0
g0 = + inf, initially size of gradient is unknown
η0 =

2
d
, a good starting value for η

3. Iterate:

For t = 1 . . . T
∀ j ∈ {0 . . . n− 1} ŷj =

1−exp(−xjw)

1+exp(−xjw)

∀ j ∈ {0 . . . n− 1} ∇j = xj · (ŷ− y)
∇ = ∇+ λw
gt = ||∇||1
If gt − gt−1 < 0 then ηt =

1
2
ηt−1

Else If
gt−1

gt
> 19

20
then ηt =

3
2
ηt−1

w = w− ηt∇

4. Output:

Vector w
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Note that we should rank orientations by ŷj = f(w·xj), but we rank candidates

by highest w ·xj. Since the sigmoid function is monotonously increasing, ranking

them by f(w · xj) would produce the same q̂.

4 Related Work

In recent years there have been numerous publications about image orientation.

There is work that uses low-level cues like colors and edges to determine image

orientation and there is work that uses high-level semantic cues like faces, sky etc.

This section is structured in the following way: first we define common terms,

then discuss previous work and compare with work done in this thesis.

4.1 Common Terms

• Accuracy - Unless stated otherwise this is the portion of the images in the
test set that were oriented correctly and were not rejected.

• LUV Color Space - CIE L*U*V* color space that defines every color in terms
of human-perceived lightness (L*) and the color coordinate (U* and V*).

• Color Moments (CM) - The first and second moments of a color descriptor,
the mean and variance of the color in a cell within a grid. The color is
described via three axis in the LUV color space unless stated otherwise.

• Spatial Pyramid - The combination of many grids such as 1× 1, 2× 2 and
so on.

• Support Vector Machines (SVM) - Machine learning algorithm that finds a
hyperplane in a multidimensional space that separates data into two classes
while maximizing the minimum margin (Euclidean distance to the hyper-
plane) of all samples.

• Learning Vector Quantization (LVQ) - A type of a neural network classifier
with three neural layers: input layer, classification layer and an output layer
where a winner-takes-all approach is used.
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• Edge Direction Histogram (EDH) - Features that have binned edge strength
separated by the direction of the edges. The same thing as FEDGE features
used in this thesis.

• Rejection Scheme - Unless stated otherwise, assume this means not orienting
an image where a confidence level or posterior probability is below a certain
threshold.

• K Nearest Neighbors (KNN) - Machine learning algorithm that classifies
testing samples based on the class of the K neighbors closest to it.

• Linear Discriminant Analysis (LDA) - Method of finding linear combinations
of features for classification. It is based on the assumption that conditional
probability densities are normally distributed. For the papers mentioned
here it is only used for feature selection.

• Principal Component Analysis (PCA) - Method of reducing the dimension-
ality of a feature space by looking into principal components, features that
are most descriptive (i.e. have the highest variance).

4.2 Image Orientation

The earliest paper we could find on automatic image orientation was a paper by

Thomas Kersten and Silvio Haering from 1997 [15]. They had aerial photographs

that were scanned with different scanners at different resolutions. All the images

had fiducial marks (recognizable objects) from which the orientation could be

determined. Kersten and Haering used the Hough Transform of the image and

oriented it. They used a spatial pyramid and looked for these marks within it.

They compared them to a correctly-oriented template via Least Squares Matching

(LSM) and chose the orientation that matched it the best. With the technology

available back then, it took anywhere between 3 and 30 seconds to orient an image

automatically.

The first piece of work that tackled the problem of automatically orienting general

images was done by Y. Wang and HJ. Zhang in 2001 [30]. They took photographs

35



from the COREL photo gallery and oriented them using a technique similar to the

one described in this thesis. They broke the image into an 8×8 grid and computed

CM and EDH features on the peripheral cells. They had 288 features from CM

and 925 from EDH. When training only on CM features, they compared LVQ and

SVM and got accuracy of 69.2% and 73.7% respectively, concluding that SVMs

were better than LVQ for orientation detection. Because the COREL database

is so diverse and includes photos that do not have a distinct orientation (like a

photo from the top of a bowl on a table) a rejection scheme had to be used. With

50% rejection and both CM and EDH features they were able to achieve 96.5%

accuracy using SVMs. They also tried a two-layer SVM framework. They had 8

SVMs learn in parallel and then another SVM as a layer on top that outputted

a master prediction. Using both features, two-layer-SVM and a rejection of 50%

they were able to achieve 97.5% accuracy.

A year later, Vailaya, Y. Wang and HJ.Zhang published a paper [27] that com-

pared K-NN, SVM, LVQ, Mixture of Gaussians and Hierarchical Discriminating

Trees (HDR) as machine learning algorithms for image orientation. They used

CM features on a 10 × 10 grid and a subset of photos from the COREL gallery

to as data. After computing large feature vectors and they reduced them with

LDA and PCA. They claim that LDA is much better than PCA so they only used

LDA when reporting results. In their results, LVQ achieved ∼1% better accuracy

than SVM and using LDA generally resulted in better performance. They claim

that in additional to speeding up learning, using only features selected by LDA

results in more general classifiers. The best accuracy of 96.5% was achieved using

a Mixture of Gaussians on features selected by LDA.

L. Zhang, MJ. Li and H.J. Zhang then wrote a paper [32] on image orienta-
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tion where they compared results from their previous work [30] against using

AdaBoost. Their paper claims that SVM perform better than LVQ. They used

CM and EDH features calculated from a 5×5 grid with 325 and 475 feature vector

sizes respectively. When they tried AdaBoost on the same subset of photos from

the COREL gallery they got 76.5% accuracy and 95.4% with 50% rejection. They

tried improving the accuracy for AdaBoost by combining features via subtraction

(subtracting some features from others to make new features). Then they used a

run of AdaBoost to select 1400 features, and then ran AdaBoost again to train.

With that they were able to get 96.5% accuracy, which was better but still inferior

to the 97.5% accuracy they achieved with two-layer SVM. They also tried improv-

ing the results by modifying the rejection scheme to reject more indoor images.

On a different dataset, if they first classifying images as being indoor/outdoor and

then orient them with their new rejection scheme. Using that rejection scheme

increased the accuracy from 72% to 82.1%. They explain the change stating that

indoor images are much harder to orient than outdoor.

L. Wang at al. [29] did work where they wanted to see how well they can orient

images based on high level semantics. They used a Bayesian Framework to orient

1200 images based on positions of faces, sky, light, texture and symmetry identi-

fied by humans. They had compared orienting within 4 orientations and 120 (360

degrees within a 3 degree margin of error). With all high-level cues integrated by

Bayesian Integration they were able to achieve 92.6% and 94.1% accuracy with

120 and 4 orientations respectively.

Later J. Luo and M. Boutell did some work on integrating low-level cues and

high-level-semantic cues for image orientation [13]. They mention that humans

can only achieve 84% accuracy when orienting low-resolution thumbnails and try
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to have their system match up. They compute CM features on a 7 × 7 grid re-

sulting in 294 features and EDH features on a 5× 5 grid resulting in 425 features.

With a subset of the COREL gallery they achieve 68.8% accuracy with CM fea-

tures, 54.7% with EDH features and 70.4% with both features combined. When

they add semantic cues such as face, sky, ceiling, cloudy sky and grass they get ac-

curacy of 82.7%. With 12% rejection based on confidence levels of their Bayesian

Framework, they get 88.3% accuracy. They note that if they also take into ac-

count prior orientation probabilities computed from the training set (where 72%

of all images are already correctly oriented), they achieve 91.3% accuracy with

4% rejection.

In 2004 Z. Su did work on image orientation where they used Neural Networks

(NN) [24]. They used CM features from the HSV space and EDH computed on a

4 × 4 grid. Then they used PCA to reduce the dimensionality of the features to

228. They tried using all 16 cells in the grid and just the 12 peripheral ones and

found that EDH features work best with all 16 and CM work better with just the

peripheral ones because the inner-most cells of the grid contain rotation-invariant

information that is mostly noise. For the machine learning they use Neural Net-

works with 16 hidden layers and they compare linear, logistic and softmax activa-

tion functions. With the best choice of the activation function, a two-layer Neural

Network framework and 50% rejection they achieve 99.4% accuracy on a subset

of the COREL gallery.

A little later S. Baluja and H. Rowley did work comparing very low-level cues

as features for orientation [2]. They took images from the COREL gallery and

from World Wide Web and used SVM to orient them using the following features:

R, G, B, Y, I, Q, grayscale, horizontal edges and vertical edges computed via a
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convolution with a single-step filter. They also tried normalized versions of image.

They computed the features within a spatial pyramid up to level 5 (the largest

grid was 6 × 6). Their feature vector contained mean values and variances for

each cell resulting in a total size of ∼4000. With 4 orientations they were able

to achieve an accuracy of 55.4% and brought it up to 65.2% with 40% rejection.

They also looked into what sort of images can get oriented well and which can-

not. They found that images taken outside (castles, buildings, valleys etc.) could

be oriented with 94% accuracy. Other outdoor images (railways, some animals,

African landscape etc.) could only be oriented with 81% accuracy. Images of wild

life and people could be only oriented with 59% accuracy. Hard to orient images

included doors, caverns, reptiles in grass etc. and could only be oriented with 40%

accuracy. Lastly, certain images could not be oriented (had orientation accuracy

of 25%, the same random guessing) included color backgrounds and textures top-

views on flowers, caves with crystals, aerial photographs etc. Their results seem

to imply that normalizing single channels hurts accuracy (removing normalized

channel features results in better performance) and variance caries some informa-

tion (they report a 1% drop in accuracy without variance features).

Around the same time M. Datar and XJ. Qi tried orienting images using Self

Organizing Maps (SOM) [6]. They computed CM features on a 4 × 4 grid and

only used peripheral cells. They used both first and second moments in the HSV

color space as features resulting in feature vectors of size 72. Then trained a SOM

classifier with 16 hidden layers and achieved 75% accuracy on a private dataset.

Later L. Lumini and L. Nani oriented images using a variety of features and a

variety of algorithms and then tried a variety of algorithms on top of that to boost

the performance [19]. They used their own dataset. They tried the following fea-
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tures: CM, EDH, Harris Corner Histogram (HCH) and Phase Symmetric (PHS),

and the following algorithms: Linear Discriminant Classifier (LDC), Quadratic

Discriminant Classifier (QDC), Parzen Window Classifier (PWC) and Radial and

Polynomial SVM (RSVM and PSVM). For CM and all-combined features QDC

was the best and for all the other stand-alone features RSVM showed best ac-

curacy. They used all classifiers with all the features, and tried combining the

predictions via Min Rule, Max Rule, Vote Rule, Mean Rule, Dynamic Classifier

Selection (DCS) and BORDA count. BORDA count yielded the best accuracy of

62%. They modified the algorithm a little and achieved a 73.5% accuracy with it

and further improved it to 88% with 50% rejection. For comparison, they tried

RSVM on CM+EDH features with the same data and with 50% rejection achieved

only 74% accuracy.

Around the same time E. Tolstaya did work on image orientation using AdaBoost

for classification [25]. They used a private dataset of outdoor images with 800

samples. They compute CM features and color-angle features in an N ×N grid.

They only classify within 3 orientations, but as a sequence of two binary classifica-

tion problems. First they classify as upright or not, and if not classify which way

it should be rotated (90 degrees left or right). With .4% rejection they achieve

accuracy of 87% and with 40% rejection they achieve 90%.

In 2009, there was a patent application submitted by D. Wang et al. that de-

scribed an image orientation system [8]. They used CM features computed on a

7 × 7 grid and EDH features computed on a 5 × 5 grid resulting in 294 and 425

features respectively. They used the features to classify photos into one of the

17 classes from birds, plants, animals, flowers, butterflies etc. After classification,

they used Approximate Nearest Neighbour (ANN) classifier to orient the images.
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They achieved 97% - 100% accuracy on their private dataset that only included

images from the 17 classes.

4.3 Discussion

The majority of the work done in the image orientation field has been somewhat

similar. Color Moments (CM) and Edge Direction Histograms (EDH) are the

two ways to compute features used in almost all attempts to orient images. Most

papers use features based on low-level cues. This thesis is no different. Humans

use primarily low-level cues to know which way is up [29] so it makes sense to let

machines use them to orient images.

SVM seems to be the machine learning algorithm of choice for learning ori-

entations. None of the papers address ease of implementation as a criterion for

choosing a machine learning algorithm. Only work by Lumini and Nani [19] com-

pares various machine learning algorithms against each other. One of the main

criteria for choosing algorithms tried in this thesis was ease of implementation.

A number of algorithms was implemented and compared to the SVM standard

(SVMlight implementation).

The work for this thesis was done years after previous work in image orien-

tation, and with faster computing power available we were able to consider data

with a much larger number of features. Previous work in image orientation used

feature vectors of size ∼ 1000 with all features combined. We used ∼ 8500 deci-

sion stumps. However, because our feature vectors are binary, each vector is only

1KB of data, the same as ∼ 250 real-valued features stored as floats. We are con-

vinced that using a small number of features (or decision stumps) is detrimental

to the prediction accuracy based on figures 11, 23 and 25. The number of features

computed should be as large as the hardware will allow.
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The standard way of capturing color information is computing Color Moments.

We noticed that CM features do not take into account whether certain colors are

present or absent. For example shades of red are uncommon in upper regions

of a correctly oriented outdoor image. If a lower region of an image contained

primarily red and green colors (for example a girl in a red sweater lying on grass),

the CM features would compute the color as yellow (V’ in LUV space or H in

HSV space) with large variance whereas two binary indicators for presence of red

and green would better describe the scene. On top of that the absence of red

is a feature as well, which cannot be captured by CM features. Furthermore to

capture the colors well with CM features the grid must align with the place where

the color changes. This motivates the use of a spatial pyramid, which the majority

of previous attempts at image orientation did not use.

In this thesis we focused on machine learning algorithms that can return a

linear weight vector as a classifier. We put importance on the fact that using

linear weights is the fastest way to predict orientation and it requires the least

space. This allows for the use of linear weights computed with these classifiers as

weak learners, or the first level of a final classifier.

In his paper Baluya [2] demonstrated that orientation accuracy depends in

large part on the type of images being oriented. The majority of image orientation

work has been tested on subsets of the COREL photo gallery which has a large

number of photos with an ambiguous correct orientation [24]. That is why we

chose to use our own dataset where a human could orient every photograph. We

admit that we did not choose a very hard dataset. That allowed us to achieve

good accuracy without any rejection (see figure 24).

Some work in image orientation took the approach of computing a large num-

ber of features and then selecting a subset of those to use by some criteria. Most

common ways of selecting features are PCA and LDA. Vailaya et al. [27] stated
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that selecting features (pruning out unnecessary features) might be beneficial be-

cause there will be fewer features to capture noise. We tried selecting features

using Naive Bayes as opposed to running AdaBoost and found that the latter was

far superior (see figure 23).

5 Implementation Notes

One of the goals for this project was to come up with algorithms that could work

fast, so everything was implemented from scratch using Java. The images are

loaded using standard Java libraries, but everything else is implemented by us.

We chose Java because it’s portable, cross-platform, wide-spread and faster than

R or MatLab. A lot of things that we implemented have implementations in Mat-

Lab, but we chose not to use them because of unnecessary memory allocation

problems. Even using Java we had to manually call the Garbage Collector to free

up memory.

Prior to computing features we scale-down images using a 4-point average per

pixel which turns out to be an order of magnitude faster than using any of the

Java built-in methods for this. The representation of CRED, CGREEN , CBLUE is a

one-dimensional integer array with second, third and fourth bytes (8 consecutive

bits) correspond to the eight bits for the red, green and blue channels respectively.

We use a one-dimensional array because accessing elements in it requires fewer

instructions.

A big optimization step we took was instead of rotating images, and then com-

puting the features from them, we compute the features on only one of the orien-

tations, and then use a rotation function that rotates the feature vector. Rotating

43



feature vectors (or decision stumps) is linear in the size of the vector. FCOLOR fea-

tures are straight-forward to rotate by re-indexing the spatial pyramid. FEDGE fea-

tures can also be rotated with ease: for each region, shift (re-index) the orientation

bins corresponding to the rotation. It is important that a discrete number of bins

correspond precisely to the rotation amount (with 4 orientations, the number of

bins must be a multiple of 4).

There is one problem with FHAAR features that has to be pointed out: it is not

straightforward to rotate the feature vectors. Because the features are computed

using more than one region, it is hard to map features to their rotated counter-

parts. However it is possible to rotate the spatial pyramid with region pixel-sums

precomputed, which is nearly as efficient as rotating the feature vectors.

When computing FEDGE features ideally we would use Gaussian Blur to blur the

image, but we just averaged over a 3 × 3 grid. This did not hurt the quality of

the features. For optimization reasons we used the Manhattan Distance instead

of Euclidean, and it had no effect on the result as well.

Our dataset is organized in such a way that q̃ = 1 (the first orientation is al-

ways the correct one). This eliminates the lookup for a label. However it poses a

problem: when there’s a tie between between two predictions, the one with lowest

q will always be picked. For this reason all ties must be resolved at random.

For the Averaged Perceptron algorithm implementation, there is no need to keep

track of the average w. It is enough to keep track of the total by adding wt times

the number of samples it survived to the total. The final w is then the normalized

wtotal.
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For AdaBoost variants, when picking kt = argmaxk γk both xj and −xj are con-

sidered. This is usually accomplished of learning from [xj;−xj] (decision stumps

and their negatives appended together as one vector). That is a waste of mem-

ory. Instead we pick kt = argmaxk |γk| and use |γk| instead of γk. When we

update wkt we subtract αt instead of adding it if γt < 0, so the update becomes

wkt = wkt + sign(γt)αt.

For AdaBoost variants, also note that quantities yjhk(j) are used a lot and

are constant. They can be precomputed and stored into a matrix U where

uj,k = yjhk(j).

We ran out experiments on a machine with 64-bit JVM, 8-Thread CPU and 12GB

of RAM. We implemented the algorithms ourselves so that they could make full

use of the resources. We couldn’t implement SVM or find a Java SVM package

that would work on 64-bit architecture. The Java Native Interface for SVMlight

that we used had to be run on a different machine with a 2-Thread CPU and 2GB

of RAM.

6 Tuning Parameters

There is a number of constants and algorithm parameters that needed to be de-

fined. We couldn’t tune all the parameters at the same time and instead picked

some reasonable values, and then repeatedly tuned them one-by-one. FCOLOR fea-

tures and the Perceptron algorithm were used to find the optimal size for an

image and the best re-sizing technique. Then using Perceptron Algorithm we

tuned the parameters for feature extraction. We limited the size of feature vec-

tors to 3300 for performance considerations. The parameters for machine learning

algorithms were tuned with respect to the prediction accuracy achieved on the

45



KVALIDATION image set. The optimal number of iterations T is computed through

cross-validation.

Before any feature extraction or machine learning, certain image acquisition

parameters had to be defined, namely what size to down-scale the images to.

Because the spatial pyramid sizes we were considering included grids up to 12×12,

the size had to be a multiple of 12 and numbers smaller than it. We tried different

images sizes and found that the optimal size under 500×500 was 360×360 because

12, 10, 8, 6, 5, 4, 3, 2 and 1 go evenly into it. If we downsized to a resolution of

150× 150 which is a common thumbnail size, the prediction accuracy was ∼ 2%

lower.

Through experimentation we found parameter values that worked well and

then varied the parameters one at a time and fixed them on their optimal values.

This process was repeated until the all the parameters settled in a local optimum.

The tuning shown in this section assumes all other parameters are set to their

optimal values.
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6.1 Perceptron Parameter Tuning

The Perceptron algorithm (as described above) returns a different w depending

on how many iterations over the data it is allowed to make. Even if it has already

separated the data, with more iterations w converges to the last value of wt and

eventually it over-fits the training data. The number of passes over the data T

used on KTRAIN is computed through cross-validation.

Figure 10: This plot shows the prediction accuracy at every iteration of Perceptron
averaged over 25 cross-validation runs.

Even though Perceptron is a simple algorithm, it is capable of separating the

KSUBTRAIN set with 100% accuracy. The final value of w is not the optimal, because

it over-fits KSUBTRAIN as is evident by the declining accuracy rates with a larger

number of iterations. The optimal value of T , the number of passes over the data

throughout our experiments was under 10.
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6.2 FHAAR Parameter Tuning

With feature extraction, there’s the size of the pyramid that needs to be tuned.

There are 10 features per cell that we are looking into, so that means to fit the

limit of 3300 we can use a pyramid from 2× 2 to 9× 9 or a single layer pyramid

with grid size of 18× 18. The best results were achieved using a spatial pyramid

with the maximum grid size of 9× 9.

Figure 11: A comparison of using a single grid versus a spatial pyramid when com-
puting FHAAR features. With a limit on the feature vector of 3300, these are the plots.

FHAAR features are very simple, and we expected that a very good feature

captured by them would be that outside images are usually brighter on top than

on the bottom and Haar-like-wavelets on a 2× 2 and 3× 3 grids capture it.
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6.3 FEDGE Parameter Tuning

Because with FEDGE we have a choice of having more features extracted from a

single cell in our experiments using a spatial pyramid was better than a single

grid. When tuning the largest grid size for the spatial pyramid, the following

relationship exists between the number of degree bins (b) and the grid size (g):

b =

⌊
6× 3300

g(g + 1)(2g + 1)

⌋

There is a trade-off between how many layers of the pyramid and how many degree

bins can be used.

Figure 12: This plot shows the trade-off between using a finer grid size and having
more orientation bins per cells.

The optimal combination came out to be g = 9 so BS = 2 and BB = 9 and

the corresponding number of degree bins b = 10.
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6.4 FCOLOR Parameter Tuning

There is a limit on the size of the feature vectors of 3300, so there’s a trade-off

between how many levels of the spatial pyramid we can use and how many values

per channel we can index. The best results were obtained using BB = 6 (Largest

level in the pyramid is a 6×6 and b = 3 (three colors per channel and total colors

= 33 = 27).

Figure 13: There’s a trade off between the number of possible colors and how fine the
grid is when computing presence of colors.

After grid size of 10, just having 2 colors per channel (so a total of 8 colors)

results in a vector that’s over the limit. It is important to note that it’s possible

to achieve better accuracy with larger feature vector. We can achieve 2% better

accuracy with b = 4 and 4500 decision stumps.
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6.5 AdaBoost with Capped α Parameter Tuning

We limited α to αC to slow down AdaBoost. For AdaBoost with capped α there

is a parameter αC that needs to be tuned.

Figure 14: Tuning αC on FCOLOR and FEDGE features. They have features of different
strength, so the optimal values differ a little. This particular plot was generated on a
shuffle with an easier test-set, so optimal accuracy values are high.

For different features αC has different optimal values. We hypothesize that

FCOLOR features have some strong features that do not generalize well and they

should not have a large influence and so a small αC is better. FEDGE features on

the other hand do not have that problem so αC can take on a variety of values

and still maintain relatively same accuracy. We fixed it at αC = .025.
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6.6 SoftRankBoost Parameter Tuning

SoftRankBoost has one parameter δ that needs to be tuned. This parameter is a

measure for how close to the optimal soft margin the algorithm will converge to.

We have noticed only a negligible change in accuracy by varying δ. The time for

convergence of SoftRankBoost is inversely-proportional to δ2 so we chose a value

on the high end. The range for δ is between 0 and 1. Based on figure 15 we fixed

δ = 0.9 for the rest of the experiments.

Figure 15: Tuning δ for SoftRankBoost.
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6.7 Logistic Regression Parameter Tuning

Logistic Regression implemented with Gradient descent has one parameter that

needs to be fixed: λ - the regularization factor. The maximum number of iterations

of the outer-most loop T is tuned during cross-validation.

Figure 16: Tuning λ for Gradient descent for Logistic Regression. Actual λ used is
this value multiplied by the number of the decision stumps.

The accuracy seems nearly constant for values ∈ [.001, .01] relative to the size

of the decision stumps. Since smaller value λ result in slower convergence, we

chose the higher value and set λ = .01× the size of the feature vector.
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6.8 SVMlight Parameter Tuning

For linear SVMs the only one parameter that can be tuned is c - the trade-off

between training error and margin. We varied the value of c and recorded the

results.

Figure 17: The plot shows average accuracy on the validation set using different values
for regularization parameter for SVMlight.

Based on figure 17 we set C = 0.0005.
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7 Experiments

The results we report in this thesis are averages computed from a number of ex-

periments. Images were split into 75% and 25% for KTRAIN and KTEST respectively.

At least 5-Fold-Cross-Validation was used, so optimal values of T are based on

averages of at least 5 training sessions. For performance considerations we lim-

ited the size of the binary feature vectors xj to 3300. This limit was chosen so

that we could append three feature vectors together (3300 × 3 × 628 images ×

4 orientations × 64 bits = 1.5 GB) and it could fit into the 2GB RAM machine

we ran experiments on.

The goal of our experiments was to see how well the algorithms classified orien-

tation using feature vectors computed from different feature sets. For each feature

set we permuted the images and recorded the accuracy and number of iterations

for each of the machine learning algorithms. We repeated the experiment 24 times

and reported the averages. Because our predictions take the argmax, we could

not produce ROC curves, so we can only provide a numerical summary (see figure

18) along with rejection curves.
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Average accuracy (24 runs)

Feature Set: FEDGE FCOLOR FHAAR Combined

# Features: 2850 2430 2840 8120

Perceptron 92.25± .56% 89.07± .52% 79.30± .96% 96.97± .40%

AdaBoost 90.87± .55% 90.29± .61% 78.45± .87% 96.60± .35%

MadaBoost 91.77± .51% 90.13± .62% 78.56± .84% 96.66± .31%

AdaBoost* 91.35± .47% 90.39± .58% 76.96± 1.08% 96.97± .29%

SoftRankBoost 90.98± .61% 87.70± .65% 77.87± .81% 96.60± .24%

LR-GD 92.94± .45% 91.14± .50% 80.63± .73% 96.82± .24%

SVMlight 93.05± .68% 90.87± .58% 79.25± .81% 96.69± 1.04%

Figure 18: This table shows the average accuracies achieved with different algorithms
on decision stumps computed with different feature sets. Accuracy achieved with Com-
bined features using the SVM algorithm was computed separately and

With a single set of features the best accuracy was achieved using FEDGE and

SVMs. Logistic Regression with Gradient Descent performed as well as SVMs (it

is within the margin of error). For FCOLOR and FHAAR both SVMs and LR-GD gave

optimal results and were within the margin of error of each other. Combining the

decision stumps from all the feature sets yielded better results with all the algo-

rithms. With combined features all algorithms gave roughly the same accuracy

(96− 97%) with the best accuracy achieved by AdaBoost*.

Because all the algorithms tested return a linear weight vector, the prediction

time is the same. However, the training times were different. The computation

time for a single iteration of Logistic Regression with Gradient Descent (LR-GD)

is 70ms, roughly double that of AdaBoost and its variants. Both LR-GD and

AdaBoost variants had optimal values of T (number of iterations of the outer

loop) in the range of 200− 1500. Averaged Perceptron has optimal value of T in
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the range of 3− 11, however one iteration of the algorithm took roughly as much

as time as one iteration of LR-GD. So learning with the Averaged Perceptron

Algorithm took about two orders of magnitude less time than LR-GD (3s vs 5min

including 5-fold cross-validation).

The rest of this section covers the rejection plots in some detail.

7.1 FHAAR Feature Set

With no rejection, LR-GD and SVMs achieve about the same accuracy. With a

small rejection rate there is a difference and LR-GD achieves better prediction

accuracy. From the boosting family of algorithms SoftRankBoost performs the

best. The superiority of SoftRankBoost is evident in the fact that the accuracy

increases with rejection. For AdaBoost, MadaBoost and AdaBoost* having 10−

15% rate of rejection does not increase accuracy which is an indicator that they

do not learn good weights.

Based on the Rejection Plot it seems that using LR-GD is optimal. We got

similar results with the SVM package. Averaged Perceptron is recommended

for speed of learning and ease of implementation if a drop in accuracy of a few

percentage points is acceptable. Using boosting with only the FHAAR feature set

is not advised.
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Figure 19: Average accuracies on the FHAAR set using different algorithms with varying
levels of rejection.

7.2 FCOLOR Feature Set

With no rejection using FCOLOR , SVM and LR-GD are the best choice of algo-

rithms. If rejection is expected SoftRankBoost becomes another candidate with

accuracy equal to LR-GD and SVM. The worst accuracy is achieved using Av-

eraged Perceptron, which can be explained by a presence of noisy features that

Averaged Perceptron cannot filter out.

Based on the Rejection Plot (see figure 20) either one of LR-GD, SVMs or

SoftRankBoost can be used interchangeably with FCOLOR features. The use of

Averaged Perceptron is only advised if a significant loss in accuracy is worth the

significant decrease in training time.
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Figure 20: Average accuracies on the FCOLOR set using different algorithms with vary-
ing levels of rejection.

7.3 FEDGE Feature Set

If only one set of features if usedFEDGE will give the best prediction accuracy. With

no rejection 93% accuracy can be achieved using either LR-GD or SVMs. If any

rejection is used SVMs is the clear choice. Using Averaged Perceptron is advised

if the speed of learning is an issue and a little loss in accuracy is tolerable. LR-GD

did not separate the data with a good margin which is evident by a very slow rise

in accuracy with rejection compared to the other algorithms.
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Figure 21: Average accuracies on the FEDGE set using different algorithms with varying
levels of rejection.

7.4 Features Appended Together

If the decision stumps from all the features are appended together we get very large

vectors to learn from. With no rejection, all the algorithms achieve relatively same

accuracy. With some rejection, the accuracy increases dramatically using any of

the algorithms and the best accuracy can be achieved with Averaged Perceptron

and SoftRankBoost, which is expected since it is designed to maximize the area

under such curves.

The algorithm that gave the best accuracy with no rejection and the one to

reach near perfect orientation classification with least rejection rate is AdaBoost*,

despite the fact that it does not result in good rejection curves when learning

single feature sets. The combination of features allows for separation with a

larger margin and AdaBoost* uses that information well.

The use of Averaged Perceptron on all decision stumps combined is highly

60



advised because of the ease of implementation, speed of learning and high accuracy

with small rejection rates (under 15%). For best results and statistical guarantees

AdaBoost* and SoftRankBoost should be used, however they require parameter

tuning. The rejection curves in figure 22 were computed on a 64-bit machine with

12GB of RAM to comfortably have 6 algorithms learn from data with vector sizes

of approximately 9000. We were unable to run SVMlight on that machine. Instead

we ran it on the 32-bit machine with 2GB of RAM, where we were unable to

generate a rejection curve. It is probable that SVMs would perform as well as the

Perceptron algorithm on figure 22.

Figure 22: Rejection Curves for Accuracies achieved with all decision stumps com-
bined. Please note that SVM is not included here (SVMlight exited stating it was out
of memory!).

8 Partially Complete Work

In this thesis we established a base for image orientation. There are many di-

rections in which future work can go. Some of these directions are explored in
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this section. We limited the number of decision stumps, combined predictions,

predicted 1 out of 12 orientations and used the best method so far on a new

dataset.

8.1 Feature Selection

When we combined feature vectors from different features sets we got new feature

vectors of size 8120. Not all features were used by the classifiers (wk = 0). We

tried selecting l features from each feature set for a total number of 3l.

We considered two methods of feature selection: selecting the first l decision

stumps chosen by AdaBoost (without α capping) and selecting the best l decision

stumps chosen by Naive Bayes (selecting based on | y · hk|).

Figure 23: This plot shows accuracy achieved on the validation images using Logistic
Regression with features combined from every feature set with at most l decision stumps
from each. The two curves are showing selecting decision stumps with AdaBoost and
Naive Bayes.

Limiting the number of decision stumps with AdaBoost [32] was shown to be
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beneficial and overall better than limiting with Naive Bayes. We believe that

choosing only l = 500 decision stumps per feature set still results in compara-

ble prediction accuracy on the validation set. When selecting decision stumps

with AdaBoost using l = 900 was optimal. We then took the 2700 (900 · 3)

decision stumps, did 12 experiments and recorded the average. Out of the algo-

rithms that we tried, Logistic Regression performed the best with an accuracy of

98.99± .29%. SVM was a close second with a few percent of rejection. With

more than 5% of rejection any algorithm other than AdaBoost with capped αs

could be used to achieve near-perfect 99% accuracy.

Figure 24: These rejection curves are for w learned with 2700 decision stumps (900
from each feature set selected with using original AdaBoost [10] (no α capping)) with
average accuracies out of 12 experiments.

It should be noted that for individual feature sets, selecting some sub-space of

decision stumps is not beneficial at all. This is evident from figure 25. Compared

to other works with similar features [25, 19, 13, 32, 24] we used large vectors (i.e.

many decision stumps). A direct relationship between the number of features and

accuracy was observed. Therefore the maximum number of features should be
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used when using a single feature set.

Figure 25: These plots show accuracy on KVALIDATION with different features sets with
varying l - maximum number of decision stumps used. The curves are averages from
the 5 cross-validation runs using the Perceptron Algorithm.

8.2 Combining Predictions

Instead of appending decision stumps together, it is possible to train classifiers on

each feature set separately and then combine predictions. We trained using Lo-

gistic Regression and got base accuracies of 93.0%, 94.3% and 80.9% with FEDGE ,

FCOLOR and FHAAR feature sets respectively.

We used the original AdaBoost [10] to boost the resulting ws (from Logistic

Regression). The accuracy of the final classifier was 91.7%, which is lower than the

94.3% obtained using w computed from FCOLOR alone. We tried improving boost-

ing accuracy by adding more hypotheses (optimal w from each of cross-validation

runs), but the final classifier’s accuracy remained the same.

Then we combined predictions using a measure of confidence. We defined a con-
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fidence of prediction as c = s1−s2
s1−sQ

where s1 = maxq w · xq
i , sQ = minq w · xq

i and

s2 is the second highest dot product between w and xq
i where xq

i is the score of

the second candidate. Setting the final prediction for an image i as the prediction

with the highest confidence, we got an accuracy of 95.5%. If we look at predictions

from FCOLOR and FEDGE we get an accuracy of 97.5%. In fact, including predic-

tions from FHAAR always hurts the final classifier accuracy. Instead of taking the

prediction with the highest confidence, we considered predicting using the sum of

confidences and got the exact same result.

Figure 26: This diagram shows prediction accuracies for classifiers trained on FCOLOR ,
FEDGE and FHAAR decision stumps and their combinations (chosen by max prediction
confidence).

8.3 More than 4 orientations

Everything we described in this thesis can be generalized beyond Q = 4 orien-

tations. The limitation for four orientations comes from the fact that we are

using square grids. A rotated grid must align with other grids. With square grids

there are only four orientations where that happens. The solution to having more

orientations (Q > 4) is to use circular grids (grids in polar coordinate system).
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Figure 27: An example of a polar grid. Images shown are of a single polar grid with
12 angular divisions and 3 radial division positioned over an image with 0◦ and 330◦

rotation.

The downside to using polar grids is that the corners of the image are not used

for feature extraction. On the other hand images can be oriented with higher

precision. Polar grids can have small or large cells, so features can be computed

within a spatial cone (as opposed to spatial pyramid). Only one feature vector

(or one vector of decision stumps) has to be computed. The feature vectors (or

decision stumps) for other orientations can be computed by re-arranging values.

In that respect, computing features from images with any number of orientations

can be done in constant time with respect to number of orientations. Note that

computing time the first feature vector overshadows any feature-rotation.

We used FCOLOR features on a single polar grid with 12 angular divisions and 3

radial divisions (as in figure 27). We set Q = 12 and left everything else the same

way. Resulting prediction accuracies were between 50% and 60%.
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Figure 28: This plot shows an average accuracy from 10 permutations of data using
FCOLOR features and 12 candidate orientations. Logistic Regression and SoftRankBoost
clearly are best for this task. AdaBoost, MadaBoost and AdaBoost* performed poorly
compared to the other algorithms because they were not any less confident about wrong
predictions (the accuracy does not increase with rejection). The Perceptron algorithm
predicted with bad accuracy, because it only learns against one other orientation as
opposed to one versus all. An interesting thing to note is that most wrong predictions
were within 30◦ of the correct one.

Randomly guessing out of 12 orientations would yield an accuracy of 8.3%. In

comparison, the results we got are much better. There is still a lot of room for

improvement.

8.4 A Different Dataset

The dataset we used thus far contained images by the same photographer in the

same geographical region that is representative for a problem of photo orientation
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for personal use. For other problems (like handling image upload) a different

dataset is more representative. We collected 609 images from popular image

search engines by using keywords such as: outdoor, valley, outside, nature and

national geographic. We collected thumbnails of the images (smallest side had

size of 150 pixels). All the images had to meet the same criteria as our original

dataset: they must be taken outside during daylight and pieces of background

must be visible.

Figure 29: Examples of images in the dataset acquired from the Internet.

The method that worked before - Logistic Regression learning from 2700

decision stumps was tried it on this Internet dataset. We got an accuracy of

94.55 ± .56% on KTEST . From the Rejection Curves(see figure 30) it is evident

that with 30% rejection rate Logistic Regression can achieve 100% accuracy. For

fast learning, Averaged Perceptron is a good choice because it can achieve 99%

accuracy with 20% rejection.
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Figure 30: Rejection Curves for Prediction Accuracy with machine learning algorithms
training on 2700 decision stumps composed of 900 per feature set chosen by AdaBoost.

9 Future Work

In this thesis we covered basic automatic image orientation on an easy dataset.

There are many ways in which this work can be built upon. There are more

features and other algorithms that can be tried. Features and algorithms can be

combined to make stronger features and algorithms. More special purpose and

generalized automatic image orientation techniques can be explored.

A simple way to generate new features would be to combine existing features.

Features can be combined in a linear fashion with subtraction/addition and with

binary operators. Other ways to get low-level features include: phase symmetry,

Hough transforms, colored-edges, texture, color values in different color spaces

etc. High level features (semantic cues) can be used for special-purpose image

orientation such as: recognizing text, faces or landmarks.

If a lot of features are used, there is a need for good feature selection. There
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are many ways of feature selection that can be tested like PCA, LDA or selecting

decision stump k if wk is higher than threshold where w is computed using one

of the algorithms described in this thesis. It may be beneficial to first append all

decision stumps together and then select the best ones from them.

There is a lot of potentially rewarding work that can be done with prediction

combination. It is possible to combine predictions with SVMs and other AdaBoost

variants such as Entropy Regularized LPBoost [11]. There are other ways to

calculate prediction confidence other than taking the dot product of w and xq
i

and the other methods described here. Lumini and Nanni [19], Luo and Boutell

[13] and Zhang et Al [32] covered substantial work combining predictions for

image orientation. An area of interest might lie in combining different prediction

combination techniques with different rejection techniques.

For general image orientation future work involves trying specialized rejection

schemes for certain types of images and a more complicated automatic image

orientation framework. Excellent results have been achieved in a limited-class

setting [8] by first classifying images into a number of classes and then orienting

them within that class. General-purpose image orientation techniques should

combine classification, semantic cue recognition and rejection schemes for optimal

orientation prediction results.

As a new approach to image orientation detection with more than 4 possible

orientations, exploring more about using polar grids is an interesting topic. Future

work in this area might include trying different polar grid sizes and a spatial cone

grid, trying FEDGE features, trying a polar version of FHAAR features, combining

features or having error-tolerance of some number of degrees (for example training

using 12 orientations, and predicting out of 4).
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10 Conclusion

A method for orienting images was proposed that consisted of first extracting

decision stumps and then training using machine learning algorithms that return

a linear weight vector. Three types of features were considered: FHAAR (pres-

ence of strong light-dark contrast), FCOLOR (color presence) and FEDGE (presence

of directional edges). The following machine learning algorithms were consid-

ered: Averaged Perceptron, AdaBoost (with limited α), MadaBoost, AdaBoost*,

SoftRankBoost, Logistic Regression and an implementation of SVMs (SVMlight).

A dataset consisted of 628 images. Each image was taken with the following

criteria: taken outdoors during daylight, had a visible background and could be

oriented by a human. Binary feature vectors were computed from images at the

resolution of 360× 360. Local features were computed in the context of a spatial

pyramid with the largest grid size such that the total number of decision stumps

was under 3300 per feature set.

As a single set of features FHAAR features were the worst. We were only

able to achieve 80.6% prediction accuracy with Logistic Regression. If we al-

lowed a 50% rejection rate, using SVM we could get 94.4% prediction accuracy.

FCOLOR features with Logistic Regression had 91.1%, 96.9% and 99.1% accuracy

with 0%, 20% and 50% rejection rate respectively. FEDGE features with SVMs gave

93.0%, 98.5% and an 100.0% accuracy with 0%, 20% and 50% rejection rate re-

spectively. Combining all the decision stumps together (8120) gave accuracy of

97.0% using AdaBoost* and accuracy of 100% with only 21% rejection rate.

The best results (99.0% accuracy with no rejection) were achieved by selecting

(with the original AdaBoost) 900 decision stumps from each feature set and then

training with Logistic Regression on all 2700 of them. However this approach does

not yield 100% without a 40% rejection rate.
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Throughout our experiments, using Logistic Regression yielded highest or

nearly highest prediction accuracies. If the training time is an issue, then Av-

eraged Perceptron is the definitive choice because it trains in two orders of mag-

nitude less time. If a rejection scheme must be used, we find SoftRankBoost to

be the appropriate algorithm because it works well with rejection schemes and

mostly gives better accuracy than all other boosting variants with some rejection.

Additional work was done in the following areas: trying more than 4 orienta-

tions, building a second-layer classifier on top of the algorithms presented here,

using a better feature selection method and trying a different dataset. There is

possible future work that can be done in automatic image orientation including

trying new features, trying new algorithms, using different rejection schemes and

confidence measures.
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